Brain Inspired Intelligence Forum

“Brain-inspired intelligence” is a process that uses neural computing to simulate the processing of information by the human brain. It is considered to be an important direction of “next-generation artificial intelligence” and is also a hotspot in the field of artificial intelligence. The development of artificial intelligence requires a real understanding of the brain and learning how the brain thinks. So, will the robot have the same intelligence as humans? The reference and research of the brain has always been a direction of the development of artificial intelligence, and the realization of artificial intelligence with human consciousness is the long-term goal of mankind. In this forum, we will invite 6 experts to introduce the research progress of brain-inspired intelligence and the difficult problems in brain-inspired research from different view, and to prospect the future research.

      

Si Wu

Peking University

TitlePush-pull Feedback Implements Rough-to-fine Information Processing

Abstract: Experimental data has revealed that in addition to feedforward connections, there exist abundant feedback connections in a hierarchical neural pathway. Although the importance of feedback in neural information processing has been widely recognized in the field, the detailed mechanism of how it works remains largely unknown. Here, we investigate the role of feedback in hierarchical memory retrieval. Specifically, we consider a multi-layer network which stores hierarchical memory patterns, and each layer of the network behaves as an associative memory of the corresponding hierarchy. We find that to achieve good retrieval performance, the feedback needs to be dynamical: at the early phase, the feedback is positive (push), which suppresses inter-class noises between memory patterns; at the late phase, the feedback is negative (pull), which suppresses intra-class noises between memory patterns. Overall, memory retrieval in the network progresses from rough to fine. Our model agrees with the push-pull phenomenon observed in neural data and sheds light on our understanding of the role of feedback in neural information processing.

Biography:Dr. Si Wu is Professor at School of Electronics Engineering & Computer Science, Principle Investigator at IDG/McGovern Institute for Brain Research, and Principle Investigator at PKU-Tsinghua Center for Life Science in Peking University. He was originally trained as a theoretical physicist and received his BSc, MSc, and PhD degrees all from Beijing Normal University (87-95). His research interests have turned to Artificial Intelligence and Computational Neuroscience since graduation. He worked as Postdocs at Hong Kong University of Science & Technology (95-97), Limburg University of Belgium (97-98), and Riken Brain Science Institute of Japan (98-00), and as Lecturer/Senior Lecturers at Sheffield University (00-02) and Sussex University (03-08) of UK. He came back to China in 2008, and worked as PI at Institute of Neuroscience in Chinese Academy of Sciences (08-11) and Professor in Beijing Normal University (11-18). His research interests focus on Computational Neuroscience and Brain-inspired Computing. He has published more than 100 papers, including top journals in neuroscience, such as Neuron, Nature Neuroscience, PNAS, J. Neurosci., and top conferences in AI, such as NIPS. He is now Co-editor-in-chief of Frontiers in Computational Neuroscience.

 

Sen Song

Tsinghua University

Title: Recent progress in brain research and inspirations for neurocomputing

Abstract:Recently, big scale neuronal recordings are starting to reveal the way information is represented in the nervous system. At the same time, analysis of artificial neural networks trained by deep learning is also starting to reveal its representations. In this talk, I will try to summarize and compare representations in deep neural networks and the brain, regarding objects, object features, object relations, tree like structures and graph-like structures, and start to build a mathematical framework to describe them.

 Biography: Dr. Sen Song is an principal investigator at Tsinghua Laboratory for Brain and Intelligence and Department of Biomedical Engineering at Tsinghua University. He received his Ph.D. degree in Neuroscience from Brandeis University in 2002. Before joining Tsinghua in 2010, he did post-doctoral research at Cold Spring Harbor Laboratory and Massachusetts Institute of Technology. His work in computational neuroscience on spike-timing dependent plasticity and motif analysis of cortical connectivity have been widely cited and form some of the theoretical foundations of brain-inspired computing. His current work involves computational neuroscience, neural circuits underlying emotions and motivations, and the interface between neuroscience and artificial intelligence.

 

 

Wenming Zheng

Southeast University

Title: Action Intention Understanding and Emotion Recognition for Human Computer Interface

 Abstract:Action intention understanding and emotion recognition play an important role in human computer interface. In this talk, I will address the methods of action intention understanding and emotion recognition from psychophysiological signals, such as EEG or audiovisual signals. Then, I will also briefly address the applications of this research in medical treatment and education.

 Biography:Wenming Zheng received his PhD degree in signal and information processing from the Department of Radio Engineering, Southeast University, Nanjing, China, in 2004. He is currently a Professor and the Director of the Key Laboratory of Child Development and Learning Science, Southeast University. He ever worked as a visiting scholar or visiting professor at Microsoft Research Asia (MSRA), Chinese University of Hong Kong (CUHK), University of Illinois at Urbana-Champaign (UIUC), and Cambridge University, respectively. His current research interests include affective information processing for multi-modal signals, e.g., facial expression, speech, and EEG signals, and their applications in education and medical care. Dr. Zheng was an Awardee the Microsoft Young Professor Professorship. He won the Second Prize of the National Technological Invention in 2018, the Second Prize of the Natural Science of Ministry of Education in 2008 and 2015, the Second Prize of the Jiangsu Provincial Science and Technology Progress in 2009. He served as an Associated Editor of several peer reviewed journals, such as IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, Neurocomputing, and The Visual Computer. He is a Council Member of the Chinese Society of Cognitive Science.

 

Yijun Wang

Chinese Academy of Sciences

Title: Recent Progress in Brain-Machine Integration Technology

Abstract: The brain-computer interface (BCI) technology establishes a direct communication channel between the brain and external devices, which can replace, restore or enhance human’s perception, cognition and motor functions. In recent years, as a new form of hybrid intelligence, the BCI-based brain-machine integration technology has shown great potential in the fields of healthcare, human-computer interaction, and national defense. In this talk, I will introduce recent progress in the development of the brain-machine integration technology. I will first review the history, current status, methodology, and challenges in this field. I will then present examples of progress of the brain-machine integration technology in communication and control, human augmentation, multi-modal integration, and biometrics.

Biography: Yijun Wang is a Research Fellow at the Institute of Semiconductors, Chinese Academy of Sciences, and a member of CAS Center for Excellence in Brain Science and Intelligence Technology. He was selected by the Thousand Youth Talents Plan of China in 2015. He received a B.E. degree and a Ph.D. degree in biomedical engineering from Tsinghua University in 2001 and 2007, respectively. From 2008 to 2015, he was first a Postdoctoral Fellow and later an Assistant Project Scientist at the Institute for Neural Computation, University of California San Diego, USA. His research mainly focuses on neural engineering and neural computation. His research interests include brain-computer interface (BCI), biomedical signal processing, and machine learning. He has published more than 100 papers in scientific journals and conferences such as PNAS, Journal of Neuroscience, IEEE Transactions on Biomedical Engineering. His papers have been cited more than 4500 times according to Google Scholar.

Xiaolin Hu

Tsinghua University

Title: Deep Learning Predicts Correlation between a Functional Signature of Higher Visual Areas and Sparse Firing of Neurons

Abstract: Visual information in the visual cortex is processed in a hierarchical manner. Recent studies show that higher visual areas, such as V2, V3, and V4, respond more vigorously to images with naturalistic higher-order statistics than to images lacking them. This property is a functional signature of higher areas, as it is much weaker or even absent in the primary visual cortex (V1). However, the mechanism underlying this signature remains elusive. We studied this problem using computational models. In several typical hierarchical visual models including the AlexNet, VggNet and SHMAX, this signature was found to be prominent in higher layers but much weaker in lower layers. By changing both the model structure and experimental settings, we found that the signature strongly correlated with sparse firing of units in higher layers but not with any other factors, including model structure, training algorithm (supervised or unsupervised), receptive field size, and property of training stimuli. The results suggest an important role of sparse neuronal activity underlying this special feature of higher visual areas.

Biography: Xiaolin Hu is an associate professor in the Department of Computer Science and Technology, Tsinghua University, Beijing, China. He got his PhD degree in Automation and Computer-Aided Engineering at The Chinese University of Hong Kong in 2017. He was a postdoc at Tsinghua University during 2017-2019. His research areas include artificial neural networks and computational neuroscience. His main research interests include developing brain-inspired computational models and revealing the visual and auditory information processing mechanism in the brain. He has published over 70 research papers in journals include IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Image Processing, IEEE Transactions on Cybernetics, PLoS Computational Biology, Neural Computation, and conferences include CVPR, NIPS, AAAI. He serve as an Associate Editor of IEEE Transactions on Neural Networks and Learning Systems and Associate Editor of Cognitive Neurodynamics.

 

Jian Liu

University of Leicester

Title: Towards the next generation of computer vision: visual computation with spikes

Abstract: Neuromorphic computing has been suggested as the next generation of computational strategy.  In terms of vision, the retina is the first stage of visual processing in the brain. The retinal coding is for understanding how the brain processes stimulus from the environment, moreover, it is also a cornerstone for designing algorithms of visual coding, where encoding and decoding of incoming stimulus are needed for better performance of physical devices. Here, by using the retina as a model system, we develop some data-driven approaches, spike-triggered non-negative matrix factorization and deep learning nets for characterizing the encoding and decoding of natural scenes by retinal neuronal spikes. I further demonstrate how these computational principles of neuroscience can be transferred to neuromorphic chips for the next generation of the artificial retina. As a proof of concept, the revealed mechanisms and proposed algorithms here for the retinal visual processing can provide new insights into neuromorphic computing with the signal of events or neural spikes.

Biography: Dr. Jian Liu received the Ph.D. in mathematics from UCLA, then worked as Postdoc Fellow at CNRS, France, and University of Goettingen, Germany. He is currently a Lecturer of Computational Neuroscience at University of Leicester, UK. His area of research includes computational neuroscience and brain-inspired computation for artificial intelligence. His work was published in Nature communications, eLife, Journal of neuroscience, PLoS computational biology, IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on cybernetics, etc.